ADS1263IPWR vs ADS7891IPFBR

Part Number
ADS1263IPWR
ADS7891IPFBR
Category Data Acquisition - Analog to Digital Converters (ADC) Data Acquisition - Analog to Digital Converters (ADC)
Manufacturer Texas Instruments Texas Instruments
Description IC ADC 32BIT SIGMA-DELTA 28TSSOP IC ADC 14BIT SAR 48TQFP
Package Bulk Tape & Reel (TR)
Series - -
Features PGA, Temperature Sensor -
Operating Temperature -40°C ~ 125°C -40°C ~ 85°C
Mounting Type Surface Mount Surface Mount
Package / Case 28-TSSOP (0.173\", 4.40mm Width) 48-TQFP
Supplier Device Package 28-TSSOP 48-TQFP (7x7)
Reference Type External, Internal External, Internal
Sampling Rate (Per Second) 38k 3M
Data Interface SPI Parallel
Number of Bits 32 14
Voltage - Supply, Analog 5V 5V
Voltage - Supply, Digital 2.7V ~ 5.25V 2.7V ~ 5.25V
Number of Inputs 5, 10 1
Input Type Differential, Single Ended Pseudo-Differential
Configuration MUX-PGA-ADC S/H-ADC
Ratio - S/H:ADC - 1:1
Number of A/D Converters 1 1
Architecture Sigma-Delta SAR
  • 1. Why do we need analog-to-digital converters?

    The reasons why we need analog-to-digital converters mainly include the following:
    Digital system processing: Many computers and electronic devices are digital systems, which are more suitable for processing digital signals. Analog signals are difficult to process in digital systems, and after analog-to-digital conversion, the signals can be represented, stored and processed in digital form.
    Noise immunity: Digital signals are more noise-resistant than analog signals. Digital signals can be protected and restored by means such as error correction codes, while analog signals are easily interfered by noise.
    Accuracy: Digital signals are more accurate because they can be represented with higher resolution. Analog signals have accuracy limitations, and analog-to-digital conversion can improve the resolution of the signal.
    Application scenarios: Analog-to-digital converters are widely used in many fields, including automatic control systems, audio and video processing, sensor interfaces

  • 2. When is ADC used?

    ADC (Analog-to-Digital Converter) is widely used in a variety of scenarios, including but not limited to:
    Sensor interface: For example, temperature sensors, pressure sensors, and light sensors, ADC converts analog voltages into digital signals for the use of digital thermometers, temperature control systems, barometers, air pressure sensing systems, light intensity detection and control systems.
    Audio signal processing: In microphones, ADC converts analog audio signals into digital signals for digital audio processing, recording, and playback.
    Medical equipment: Such as electrocardiograms (ECGs) and oximeters, ADC converts analog signals of ECG signals and blood oxygen saturation into digital signals for heart health monitoring and diagnosis and blood oxygen level monitoring.
    Data acquisition system: In various applications that need to collect data from analog signals, ADC is used to convert analog signals into digital signals for storage, processing, and analysis.

  • 3. What is the difference between ADC and DAC?

    The main difference between ADC and DAC is that they process different types of signals and conversion directions.
    The main function of an ADC (analog-to-digital converter) is to convert analog signals into digital signals. This process involves sampling, quantization, and encoding, where sampling is the periodic measurement of the value of an analog signal at a certain sampling rate, quantization is the conversion of the sampled continuous values ​​into a finite number of discrete levels, and encoding is the conversion of the quantized discrete levels into binary code. The output of the ADC is a digital signal that can be processed and stored by a computer or other digital circuit for various applications such as digital signal processing, data logging, and communications. Common applications in life include microphones, digital thermometers, digital cameras, etc., which convert the actual perceived analog information into digital signals for further processing and analysis12.
    DAC (

  • 4. What is the difference between the input and output of an ADC?

    The input of ADC (Analog-to-Digital Converter) is analog quantity and the output is digital quantity.
    The main function of ADC is to convert continuous analog signal into discrete digital signal. In electronic systems, analog signal usually refers to continuously changing voltage or current, such as the signal obtained from microphone or sensor. The amplitude and frequency of these analog signals can change continuously, while digital signals are composed of a series of discrete values, usually expressed in binary form.
    Input: The input of ADC receives analog signals, which can be in the form of continuously changing physical quantities such as voltage and current. The amplitude and frequency of analog signals can change continuously, such as the voltage range from 0V to 5V.
    Output: The output of ADC is digital signal, which is composed of a series of discrete values, usually expressed in binary form. The advantage of digital signals is that they can be calculated and processed quic

Shopping Cart Tel: +86-755-28503874 Email: [email protected] Skype: +8615019224070, annies65, +8615118125813 QQ: 568248857, 827259012, 316249462 Mobile: +8615019224070, +8615118118839, +8615118125813 WeChat: Send Message
TOP