SI5340D-D-GM vs LTC6948IUFD-2#TRPBF

Part Number
SI5340D-D-GM
LTC6948IUFD-2#TRPBF
Category Clock/Timing - Clock Generators, PLLs, Frequency Synthesizers Clock/Timing - Clock Generators, PLLs, Frequency Synthesizers
Manufacturer Skyworks Solutions Inc. Analog Devices Inc.
Description IC JITTER ATTENUATOR/MULTIPLEXER IC FRACTIONAL-N PLL W/VCO 28QFN
Package Tape & Reel (TR) Tray
Series - -
Type - Clock/Frequency Synthesizer (RF/IF), Fractional N
Voltage - Supply 1.71V ~ 3.47V 3.15V ~ 5.25V
Operating Temperature -40°C ~ 85°C -40°C ~ 105°C
Mounting Type Surface Mount Surface Mount
Package / Case 44-VFQFN Exposed Pad 28-WFQFN Exposed Pad
Supplier Device Package 44-QFN (7x7) 28-QFN (4x5)
Output CML, HCSL, LVCMOS, LVDS, LVPECL Clock
Frequency - Max 350MHz 4.91GHz
Number of Circuits 1 1
Input LVCMOS, LVDS, LVPECL, Crystal Clock
PLL Yes Yes
Ratio - Input:Output 4:4 1:1
Differential - Input:Output Yes/Yes Yes/Yes
Divider/Multiplier Yes/No Yes/No
  • 1. What is the difference between a PLL and a synthesizer?

    The main difference between a PLL (phase-locked loop) and a synthesizer lies in their functions and application scenarios. PLL is mainly used to achieve phase locking of the output signal with the input signal, while a synthesizer is used to generate output signals of multiple frequencies.
    PLL (Phase Locked Loop) is a circuit used to lock the phase. It consists of three main parts: a phase detector (PD), a low-pass filter (LPF), and a voltage-controlled crystal oscillator (VCO).
    A synthesizer is a device used to generate output signals of multiple frequencies. It realizes the frequency synthesis function by adding a frequency divider on the basis of PLL. Synthesizers can be divided into integer frequency synthesizers and fractional frequency synthesizers.

  • 2. Why do clocks use PLL?

    The reason why clocks use PLL is because PLL can provide a stable high-frequency clock signal to ensure the precise operation and synchronization of electronic systems. PLL (Phase Locked Loop) compares the phase difference between the input signal and the output signal generated by the voltage-controlled oscillator (VCO) and adjusts the frequency of the VCO so that the phase of the output signal is synchronized with the phase of the input signal. This synchronization process is achieved through a closed-loop feedback system, which ensures the stability and accuracy of the clock signal.
    The main functions of PLL include:
    Providing a stable high-frequency clock signal: PLL generates a stable high-frequency clock based on the reference clock provided by the oscillator to ensure stable circuit timing.
    Frequency synthesis: PLL can multiply or divide the frequency of the input signal to generate a clock signal of the required frequency.
    Phase control: By adjusting the phase of the output signal, it ensures synchronization with the input signal and reduces phase deviation.
    In modern electronic systems, the role of clock signals is very important. It is not only used to synchronize the operation of various components and ensure that key time parameters are within the allowable range, but also regulates the connection speed of data transmission in communication systems. The application of PLL ensures the accuracy and stability of the clock signal and improves the performance and reliability of the entire system.

  • 3. What are frequency synthesizers used for?

    Frequency synthesizers have a wide range of applications in many fields, mainly including the following aspects:
    Communication systems: In communication systems, frequency synthesizers are used to generate carrier frequencies and modulation signals to ensure the normal operation of communication equipment and the stability of signal transmission. It can provide high-precision and stable frequency signals to meet the requirements of communication systems for frequency accuracy and stability.
    Radar systems: Radar systems require accurate frequency synthesis to ensure functions such as beam pointing and target tracking. Frequency synthesizers play a key role in radar systems, providing precise frequency control to ensure the performance and accuracy of radar systems.
    Radio equipment: Radio equipment requires frequency synthesizers to generate signals of different frequencies for modulation and demodulation, signal transmission and reception, etc., to ensure effective communication between devices. The high accuracy and stability of frequency synthesizers enable radio equipment to work efficiently.
    Instrumentation and test equipment: Frequency synthesizers are used in test and measurement applications as standard signal sources. It can generate high-precision and stable frequency signals to meet the signal quality requirements of laboratory test and measurement equipment.
    Electronic countermeasure equipment: In electronic countermeasures, frequency synthesizers can be used as jammers to interfere with enemy communications and radar systems by generating signals of multiple frequencies. Its high flexibility and rapid response make it important in electronic countermeasures.
    Other applications: Frequency synthesizers are also widely used in remote control and telemetry communications, navigation, and radio and television. For example, in shortwave frequency hopping communications, frequency synthesizers can quickly switch frequencies and phases to meet the requirements of fast frequency hopping communications.

  • 4. What are the three types of frequency synthesizers?

    There are three main types of frequency synthesizers: direct analog frequency synthesis, indirect frequency synthesis, and direct digital frequency synthesis.
    Direct analog frequency synthesis: This method uses one or more different crystal oscillators as reference signal sources to directly generate many discrete frequency output signals through frequency multiplication, frequency division, mixing, etc. The advantages of direct analog frequency synthesis are high long-term and short-term frequency stability and fast frequency conversion speed, but it is difficult to debug and difficult to suppress spurious signals.
    Indirect frequency synthesis: also known as phase-locked loop frequency synthesis technology (PLL), using one or several reference frequency sources, through harmonic generator mixing and frequency division, etc. to generate a large number of harmonics or combined frequencies, and then use a phase-locked loop to lock the frequency of the voltage-controlled oscillator to a certain harmonic or combined frequency. The advantages of indirect frequency synthesis are low cost and the ability to synthesize any frequency, but slow response, mainly used in civilian equipment.
    Direct digital frequency synthesis: This method performs frequency synthesis based on the concept of phase, using digital sampling and storage technology, with the advantages of precise phase and frequency resolution, fast conversion time, etc. The key components of direct digital frequency synthesis include digital-to-analog converters, phase accumulators, and memories, etc., which store the required waveform version in digital format and create signals.

Shopping Cart Tel: +86-755-28503874 Email: [email protected] Skype: +8615019224070, annies65, +8615118125813 QQ: 568248857, 827259012, 316249462 Mobile: +8615019224070, +8615118118839, +8615118125813 WeChat: Send Message
TOP