Altera EP4SGX360FH29I4G
- EP4SGX360FH29I4G
- Altera
- IC FPGA 289 I/O 780HBGA
- Embedded - FPGAs (Field Programmable Gate Array)
- EP4SGX360FH29I4G Datasheet
- -
- Tray
-
Lead free / RoHS Compliant - 2645
- Spot Inventory / Athorized Dstributor / Factory Excess Stock
- 1 year quality assurance 》
- Click to get rates
What is EP4SGX360FH29I4G
Altera Part Number EP4SGX360FH29I4G(Embedded - FPGAs (Field Programmable Gate Array)), developed and manufactured by Altera, distributed globally by Jinftry. We distribute various electronic components from world-renowned brands and provide one-stop services, making us a trusted global electronic component distributor.
EP4SGX360FH29I4G is one of the part numbers distributed by Jinftry, and you can learn about its specifications/configurations, package/case, Datasheet, and other information here. Electronic components are affected by supply and demand, and prices fluctuate frequently. If you have a demand, please do not hesitate to send us an RFQ or email us immediately [email protected] Please inquire about the real-time unit price, Data Code, Lead time, payment terms, and any other information you would like to know. We will do our best to provide you with a quotation and reply as soon as possible.
EP4SGX360FH29I4G Specifications
- Part NumberEP4SGX360FH29I4G
- CategoryEmbedded - FPGAs (Field Programmable Gate Array)
- ManufacturerAltera
- DescriptionIC FPGA 289 I/O 780HBGA
- PackageTray
- Series-
- Voltage - Supply-
- Operating Temperature-
- Mounting Type-
- Package / Case-
- Supplier Device Package-
- Number of I/O-
- Number of Gates-
- Number of LABs/CLBs-
- Number of Logic Elements/Cells-
- Total RAM Bits-
Application of EP4SGX360FH29I4G
EP4SGX360FH29I4G Datasheet
EP4SGX360FH29I4G Datasheet , Tray
EP4SGX360FH29I4G Classification
Embedded - FPGAs (Field Programmable Gate Array)
FAQ about Embedded - FPGAs (Field Programmable Gate Array)
-
1. What is the hardware of FPGA?
FPGA (Field Programmable Gate Array) is a highly flexible programmable logic chip that users can program to achieve specific logic functions according to their needs. The main uses of FPGA include communications and networks, digital signal processing, automotive and aerospace, industrial automation, high-performance computing, smart Internet of Things and many other aspects.
-
2. Is FPGA a controller or a processor?
FPGA is a programmable integrated circuit. It is neither a traditional controller nor a traditional processor, but a device between the two. FPGAs are programmed with hardware description languages and can customize circuits according to requirements, making them suitable for application scenarios that require flexible configuration and high performance.
The difference between FPGAs and microcontrollers (MCUs) and central processing units (CPUs) lies in their flexibility and application scenarios. MCUs and CPUs are usually microcontrollers and processors with preset functions, suitable for environments that perform single tasks and require efficient execution. FPGAs, on the other hand, have higher flexibility and reconfigurability, can be programmed and reprogrammed according to specific applications, and are suitable for applications that require high customization and optimized performance.
The advantages of FPGAs include their high flexibility and reconfigurability, which makes them ideal for applications that require frequent updates or optimization of logic. Compared with application-specific integrated circuits (ASICs), FPGAs do not require permanent design fixes on silicon, so new features can be developed and tested or bugs can be fixed more quickly.
-
3. Is FPGA a microprocessor?
FPGA is not a microprocessor. FPGA (Field-Programmable Gate Array) is a special digital circuit that is mainly used to implement complex logic functions, while microprocessors are processors used to execute instructions.
FPGA and microprocessors have significant differences in function and use. FPGA is a semi-custom digital circuit that can be programmed during the hardware design stage to implement specific logic functions. FPGA solves the shortcomings of customized circuits and overcomes the shortcomings of the limited number of gate circuits of the original programmable devices. It is suitable for occasions that require highly customized logic functions. In contrast, a microprocessor (such as a CPU) is a general-purpose computing device used to execute instructions stored in it, process data, and perform computing tasks. Microprocessors include MCU (microcontroller), DSP (digital signal processor), etc., each of which has different application scenarios and functional characteristics.
Specifically, FPGA and microprocessor are also different in structure and working mode. FPGA consists of a large number of programmable logic units, and users can program to implement any logic function as needed. Microprocessors contain a central processing unit (CPU), memory, and input and output interfaces to execute predefined instruction sets, process data, and perform computing tasks. In addition, FPGAs are usually used in situations that require high-speed processing and parallel computing, such as communications, image processing, etc., while microprocessors are widely used in various computing devices and systems.
We are a professional PCB manufacturer who offers comprehensive PCB manufacturing services including: professional Ceramic PCB HDI PCB Heavy Copper PCB High-TG PCB High Speed PCB High Frequency PCB Metal Core PCB PCB fabrication and PCB assembly, providing fast turnaround prototypes for high-end products.
• Prompt Responsiveness
• Guaranteed Quality
• Global Access
• Competitive Market Price
• One-Stop support services of supply chain
Jinftry, Your most trustworthy component supplier, welcome to send us the inquiry, thank you!
Do you have any questions about EP4SGX360FH29I4G ?
Feel free to contact us:








