BFC236616564 vs MKP383315250JII2B0
| Part Number |
|
|
| Category | Film Capacitors | Film Capacitors |
| Manufacturer | Vishay Beyschlag/Draloric/BC Components | Vishay Beyschlag/Draloric/BC Components |
| Description | CAP FILM 0.56UF 5% 63VDC RADIAL | CAP FILM 0.015UF 5% 2.5KVDC RAD |
| Package | Tape & Box (TB) | Bulk |
| Series | MKT366 | MKP383 |
| Features | - | - |
| Operating Temperature | -55°C ~ 105°C | -55°C ~ 105°C |
| Mounting Type | Through Hole | Through Hole |
| Package / Case | Radial | Radial |
| Applications | General Purpose | High Pulse, DV/DT |
| Tolerance | ±5% | ±5% |
| Size / Dimension | 0.394" L x 0.217" W (10.00mm x 5.50mm) | - |
| Termination | PC Pins | PC Pins |
| Voltage Rating - AC | 40V | 900V |
| Voltage Rating - DC | 63V | 2500V (2.5kV) |
| Lead Spacing | 0.197\" (5.00mm) | 0.886\" (22.50mm) |
| Ratings | - | - |
| Height - Seated (Max) | 0.591\" (15.00mm) | - |
| Capacitance | 0.56 µF | 0.015 µF |
| ESR (Equivalent Series Resistance) | - | - |
| Dielectric Material | Polyester, Metallized | Polypropylene (PP), Metallized |

-
1. Will the performance of film capacitors degrade?
Yes
The performance of film capacitors will degrade. The performance degradation of film capacitors is mainly due to their internal structure and material properties.
Reasons for performance degradation
Metal plating oxidation: During the capacitor manufacturing process, there is a trace amount of air between the film layers, which may be ionized under the action of the electric field to produce ozone. Ozone is a strong oxidant that oxidizes the metal plating to produce non-conductive metal oxides, resulting in a reduction in the plate area and a decrease in the capacitor capacity.
Humid air: During the winding process of film capacitors, if the workshop environment is not properly controlled, there will be a large amount of humid air. These humid air will produce air ionization reactions when the capacitor is working, generating ozone, which further causes the capacitor capacity to decay.
Poor quality materials: The film materials used are of poor quality, such as uneven evaporation and defects on the film, which will cause the capacitor capacity to decay.
-
2. Can film capacitors be used for AC?
Yes
Film capacitors can be used for AC. Film capacitors can work normally in AC circuits and have specific application scenarios and advantages.
Structure and working principle of film capacitors
Film capacitors are mainly composed of metal foil (or foil obtained by metallizing plastic) as electrode plates and plastic film as dielectric. Common plastic films include polyethylene, polypropylene, polystyrene or polycarbonate. These capacitors are usually made by winding or stacking processes to form a cylindrical structure. -
3. What is the difference between foil capacitors and film capacitors?
Electrode materials, structure, and application areas
The main difference between foil capacitors and film capacitors lies in electrode materials, structures, and application areas.
Electrode materials and structures
Foil capacitors: Foil capacitors usually use metal foil as electrodes. This electrode is formed on a plastic film by vacuum evaporation, which is called a metallized film. This structure can save the thickness of the electrode foil, thereby reducing the volume of the capacitor and making it more miniaturized.
Film capacitors: Film capacitors use plastic films as dielectrics. Common plastic films include polyethylene, polypropylene, polystyrene or polycarbonate. These films overlap at both ends and are rolled into a cylinder to form a capacitor. -
4. What are the alternatives to film capacitors?
CL21 capacitors, MPB capacitors, CBB13, CBB81, MMKP82 capacitors
Alternatives to film capacitors mainly include CL21 capacitors, MPB capacitors, CBB13, CBB81 and MMKP82 capacitors. These alternatives have their own advantages and disadvantages in performance and applicable scenarios, and the specific choice depends on specific needs.
CL21 capacitors
CL21 capacitors and CBB22 capacitors can replace each other in applications such as filtering. CL21 capacitors are more stable than CBB22 capacitors under high-frequency conditions, so CL21 capacitors are more preferred in high-frequency circuits. However, CL21 capacitors are more expensive and perform better in high-frequency circuits.
MPB capacitors
MPB capacitors are boxed metallized polypropylene film capacitors with the same core as CBB22 capacitors, but with a plastic shell, which has better resistance to high temperature, moisture and sealing performance. MPB capacitors can replace CBB22 capacitors in high frequency, DC, AC and pulse high current applications, but their prices are relatively high.
CBB13, CBB81 and MMKP82 capacitors
These capacitors have a higher voltage resistance, up to 3000V, and are suitable for applications requiring higher voltages. However, they are also relatively expensive and larger in size.

