LFE2M35E-5FN672C vs XC3S1000-5FG456C

Part Number
LFE2M35E-5FN672C
XC3S1000-5FG456C
Category Embedded - FPGAs (Field Programmable Gate Array) Embedded - FPGAs (Field Programmable Gate Array)
Manufacturer Lattice Semiconductor Corporation Xilinx Inc.
Description IC FPGA 410 I/O 672FPBGA IC FPGA 333 I/O 456FBGA
Package Tray Tray
Series ECP2M Spartan®-3
Voltage - Supply 1.14V ~ 1.26V 1.14V ~ 1.26V
Operating Temperature 0°C ~ 85°C (TJ) 0°C ~ 85°C (TJ)
Mounting Type Surface Mount Surface Mount
Package / Case 672-BBGA 456-BBGA
Supplier Device Package 672-FPBGA (27x27) 456-FBGA (23x23)
Number of I/O 410 333
Number of Gates - 1000000
Number of LABs/CLBs 4250 1920
Number of Logic Elements/Cells 34000 17280
Total RAM Bits 2151424 442368
  • 1. What is the hardware of FPGA?

    FPGA (Field-Programmable Gate Array) is a hardware device, not software. FPGA is a programmable hardware device consisting of a large number of logic units, storage units and interconnection resources, which can realize complex digital circuits and system designs.
    The hardware structure of FPGA mainly includes the following parts:
    Logic unit: FPGA contains programmable logic blocks that can perform logical and arithmetic operations.
    Interconnection resources: These resources act as connections between logic blocks, allowing data to be transferred between different logic blocks.
    Memory unit: Used to store configuration information and temporary data, supporting FPGA operations and logic processing.
    The characteristics and application scenarios of FPGA include:
    Programmability: FPGA can change the structure of its internal circuits by loading configuration information to achieve different functions.
    High-speed execution: FPGA performs logic operations at the hardware level, which is usually several orders of magnitude faster than software execution.
    Wide application: FPGA is widely used in many fields such as communications, medical, automotive, aerospace, industrial automation, etc. to implement complex digital circuits and algorithms, improve equipment performance, reduce power consumption or achieve specific functional requirements.

  • 2. What is FPGA in embedded systems?

    FPGA in embedded system is a solution that integrates FPGA technology into embedded system. An embedded system is a computer system designed for a specific application, which usually includes components such as processor, memory, peripheral interface, etc., which are used to control, monitor or perform specific tasks. Combining FPGA with embedded system can bring a series of significant advantages.
    FPGA (Field Programmable Gate Array) is a programmable logic device, which consists of a large number of programmable logic units and programmable interconnection resources. It has the characteristics of flexibility and reconfigurability, and is widely used in communication, digital signal processing, embedded systems and other fields. The basic structure of FPGA includes programmable input and output units, configurable logic blocks, digital clock management modules, embedded block RAM, wiring resources, embedded dedicated hard cores and bottom embedded functional units. The design of FPGA can be implemented through hardware description language, which has high flexibility.

  • 3. Is FPGA a microcontroller?

    FPGA is not a microcontroller. There are significant differences between FPGA and microcontroller in terms of function and use.
    FPGA is a programmable integrated circuit, which is programmed through hardware description language and can customize the circuit according to needs. It is very suitable for application scenarios that require flexible configuration and high performance. In contrast, microcontrollers (MCUs) are integrated circuits with preset functions, usually used for single tasks and requiring efficient execution.
    FPGAs and MCUs also differ in structure and application scenarios. FPGAs offer great flexibility and are suitable for complex applications that require rapid prototyping and reconfigurability. On the other hand, MCUs combine processor cores, memory, and various peripherals in a single chip, designed for specific tasks, and provide cost-effective solutions.

  • 4. Is FPGA a controller or a processor?

    FPGA is a programmable integrated circuit. It is neither a traditional controller nor a traditional processor, but a device between the two. FPGAs are programmed with hardware description languages ​​and can customize circuits according to requirements, making them suitable for application scenarios that require flexible configuration and high performance.
    The difference between FPGAs and microcontrollers (MCUs) and central processing units (CPUs) lies in their flexibility and application scenarios. MCUs and CPUs are usually microcontrollers and processors with preset functions, suitable for environments that perform single tasks and require efficient execution. FPGAs, on the other hand, have higher flexibility and reconfigurability, can be programmed and reprogrammed according to specific applications, and are suitable for applications that require high customization and optimized performance.
    The advantages of FPGAs include their high flexibility and reconfigurability, which makes them ideal for applications that require frequent updates or optimization of logic. Compared with application-specific integrated circuits (ASICs), FPGAs do not require permanent design fixes on silicon, so new features can be developed and tested or bugs can be fixed more quickly.

Shopping Cart Tel: +86-755-28503874 Email: [email protected] Skype: +8615019224070, annies65, +8615118125813 QQ: 568248857, 827259012, 316249462 Mobile: +8615019224070, +8615118118839, +8615118125813 WeChat: Send Message
TOP