SN65LVDM1676DGGR vs MAX3387EEUG+T

Part Number
SN65LVDM1676DGGR
MAX3387EEUG+T
Category Interface - Drivers, Receivers, Transceivers Interface - Drivers, Receivers, Transceivers
Manufacturer Texas Instruments Maxim Integrated
Description IC TXRX HALF 16/16 64TSSOP IC TRANSCEIVER FULL 3/3 24TSSOP
Package Cut Tape (CT) Tape & Reel (TR)
Series - -
Type Transceiver Transceiver
Voltage - Supply 3V ~ 3.6V 3V ~ 5.5V
Operating Temperature -40°C ~ 85°C -40°C ~ 85°C
Mounting Type Surface Mount Surface Mount
Package / Case 64-TFSOP (0.240\", 6.10mm Width) 24-TSSOP (0.173\", 4.40mm Width)
Supplier Device Package 64-TSSOP 24-TSSOP
Protocol LVDS RS232
Data Rate 200Mbps 250kbps
Number of Drivers/Receivers 16/16 3/3
Receiver Hysteresis - 500 mV
Duplex Half Full
  • 1. What is an IC driver?

    An IC driver is an integrated circuit that is mainly used to control and drive various devices, such as LCDs, motors, etc. It integrates the circuits that drive and control these devices, making the entire circuit design more concise and reducing the risk of overcurrent and overheating.
    The role of the IC driver is to convert the signal from the host or controller into the signal required by the peripheral or sensor so that it can work properly. Depending on the function, the driver chip can be divided into many types, such as motor driver IC, LCD driver IC, etc.

  • 2. What is an interface IC?

    An interface IC is a chip with an internal interface circuit, which is mainly used for connection and data exchange between the CPU and external devices and memory. The interface IC coordinates the differences in speed, type, timing, etc. between the CPU and external devices through internally set registers, buffer logic, information format conversion and other functions to ensure accurate and efficient data transmission.
    The main functions of the interface IC include:
    Setting data storage and buffering logic: adapting to the speed difference between the CPU and external devices, and performing batch data transmission through registers or RAM chips.
    Information format conversion: such as serial and parallel conversion, adapting to different data transmission requirements.
    Coordinating timing differences: ensuring the synchronization of the CPU and external devices in timing.
    Address decoding and selection: realizing the selection and control of peripherals.
    Setting interrupt and DMA control logic: ensuring the correct processing and transmission of interrupt and DMA request signals.
    Interface ICs are widely used in various electronic devices, such as smart homes, industrial automation, computer systems, etc. For example, Type-C interface chips are used to implement Type-C interface functions, supporting high-speed data transmission and power transmission; RS-485 interface chips are used in industrial automation and control systems, supporting multi-point differential signal transmission.

  • 3. What is the difference between a transmitter and a transceiver?

    The core difference between a transmitter and a transceiver lies in their functions and uses. The transmitter is mainly responsible for converting electrical signals into optical signals and transmitting them through optical fibers; while the transceiver has both transmitting and receiving functions, which can convert electrical signals into optical signals for transmission and also convert optical signals into electrical signals for reception.
    The transmitter is usually composed of an optical transmitting module, whose function is to convert electrical signals into optical signals and transmit them through optical fibers. It is mainly used to connect devices that need to send data, such as computers, servers, etc. ‌12. The transceiver contains two modules, optical transmitting and optical receiving, which can complete the two-way transmission of signals, and can both send and receive data.

  • 4. What are SFP transceivers used for?

    SFP transceivers are mainly used for optical communication applications in telecommunications and data communications, especially for connecting motherboards and optical fibers or UTP cables for network devices such as switches and routers. SFP transceivers achieve high-speed data transmission by converting gigabit electrical signals into optical signals. Their maximum data transmission rate can reach 4.25 Gbps. They are mainly used in communication fields such as Gigabit Ethernet, Gigabit Optical Channel, switch interface, switching backplane, etc.
    SFP transceivers have many types, which can be divided into the following categories according to the cable type, transmission range, transmission rate and application scenario:
    Cable type: SFP modules can work on optical fiber and copper wire, and are divided into single-mode SFP used with single-mode optical fiber and multi-mode SFP used with multi-mode optical fiber.
    Transmission range: Multi-mode SFP is suitable for shorter distance transmission, up to 550 meters, while single-mode SFP is suitable for long-distance transmission, up to 200 kilometers.
    Transmission rate: From Fast Ethernet to Gigabit Ethernet, to 10Gb, 25Gb and 100Gb Ethernet, SFP modules are constantly upgraded to meet higher bandwidth requirements.
    Application: SFP modules are widely used in scenarios such as high-definition audio/video transmission, passive optical network (PON), multiplexing and simplex networks.

Shopping Cart Tel: +86-755-28503874 Email: [email protected] Skype: +8615019224070, annies65, +8615118125813 QQ: 568248857, 827259012, 316249462 Mobile: +8615019224070, +8615118118839, +8615118125813 WeChat: Send Message
TOP