ICL7667MTV/883B

Rochester Electronics, LLC ICL7667MTV/883B

The picture is for reference only, please refer to the product specification

  • ICL7667MTV/883B
  • Rochester Electronics, LLC
  • DUAL MARKED (5962-8766001GC)
  • Transistors - FETs, MOSFETs - Arrays
  • ICL7667MTV/883B Datasheet
  • -
  • Bulk
  • Lead free / RoHS CompliantLead free / RoHS Compliant
  • 10661
  • Spot Inventory / Athorized Dstributor / Factory Excess Stock
  • 1 year quality assurance 》
  • Click to get rates

What is ICL7667MTV/883B

Rochester Electronics, LLC Part Number ICL7667MTV/883BTransistors - FETs, MOSFETs - Arrays), developed and manufactured by Rochester Electronics, LLC, distributed globally by Jinftry. We distribute various electronic components from world-renowned brands and provide one-stop services, making us a trusted global electronic component distributor.

ICL7667MTV/883B is one of the part numbers distributed by Jinftry, and you can learn about its specifications/configurations, package/case, Datasheet, and other information here. Electronic components are affected by supply and demand, and prices fluctuate frequently. If you have a demand, please do not hesitate to send us an RFQ or email us immediately [email protected] Please inquire about the real-time unit price, Data Code, Lead time, payment terms, and any other information you would like to know. We will do our best to provide you with a quotation and reply as soon as possible.

ICL7667MTV/883B Specifications

  • Part NumberICL7667MTV/883B
  • CategoryTransistors - FETs, MOSFETs - Arrays
  • ManufacturerRochester Electronics, LLC
  • DescriptionDUAL MARKED (5962-8766001GC)
  • PackageBulk
  • Series-
  • Operating Temperature-
  • Mounting Type-
  • Package / Case-
  • Supplier Device Package-
  • Power - Max-
  • FET Type-
  • FET Feature-
  • Drain to Source Voltage (Vdss)-
  • Current - Continuous Drain (Id) @ 25°C-
  • Rds On (Max) @ Id, Vgs-
  • Vgs(th) (Max) @ Id-
  • Gate Charge (Qg) (Max) @ Vgs-
  • Input Capacitance (Ciss) (Max) @ Vds-

Application of ICL7667MTV/883B

FETs and MOSFET Arrays (FETs, MOSFETs) are widely used in various fields. In the field of communication, they are widely used in key components such as RF front ends, signal amplifiers and filters to improve the transmission efficiency and signal quality of communication systems. In the computer field, FET and MOSFET array as an important part of CPU, GPU and other core processors, assume the key role of data processing and computing tasks. In addition, in automotive electronics, industrial automation, medical equipment and other fields, FET and MOSFET arrays also play an important role, such as for motor drive control, power management, sensor signal processing and so on.

ICL7667MTV/883B Datasheet

ICL7667MTV/883B Datasheet , Bulk

ICL7667MTV/883B Classification

Transistors - FETs, MOSFETs - Arrays

FETs and MOSFET arrays (FETS, MOSFETs-Arrays) are composed of multiple Field-Effect transistors. FET) or Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) is an integrated circuit module. This array design provides high power processing capabilities while maintaining good thermal management and control characteristics. An FET or MOSFET array typically includes multiple transistors that can be connected in series, parallel, or in combination to meet specific current and voltage requirements.

FAQ about Transistors - FETs, MOSFETs - Arrays

  • 1. What is MOSFET and how does it work?

    MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor), that is, metal-oxide-semiconductor field effect transistor, is a transistor that uses electric field effect to control conduction and shutdown. MOSFET controls the flow of current between the source and drain by applying voltage to the gate. Its working principle is as follows:
    Working principle:
    When a positive voltage is applied to the gate, the electric field causes the impurities in the substrate to form an "open" n-type or p-type conductive area, i.e., a channel, between the gate and the substrate. A capacitor is formed between the oxide layer above the channel and the gate, called the gate capacitance. When the channel conductive area extends to the source and drain, the MOSFET is in the on state. In the on state, the voltage difference between the source and the drain drives the current to flow through the conductive area.
    When a negative voltage is applied to the gate, the channel on the substrate shrinks, the conductivity weakens, and the current between the source and the drain decreases. When the gate voltage continues to decrease, the channel eventually disappears, the MOSFET is in the off state, there is no conductive path between the source and the drain, and the MOSFET is in a high-resistance state.

  • 2. What are the two types of MOSFET transistors?

    There are two main types of MOSFET transistors: enhancement MOSFET and depletion MOSFET.
    Enhancement MOSFET
    When the gate voltage of the enhancement MOSFET is zero, there is no conductive channel between the source and the drain. Only when the gate voltage reaches a certain threshold voltage, the conductive channel will be formed and the current will begin to flow. This type of MOSFET requires a positive voltage to be applied to the gate to turn on, and is in a high-resistance state when no voltage is applied.
    Depletion-type MOSFET
    When the gate voltage of a depletion-type MOSFET is zero, a conductive channel already exists between the source and drain. Applying a negative gate voltage can reduce or deplete the conductive channel, thereby controlling the current. This type of MOSFET is already turned on when no voltage is applied, and needs to be turned off by applying a negative voltage.

  • 3. What devices use MOSFET?

    MOSFET (metal oxide semiconductor field effect transistor) is widely used in many fields and devices, mainly including the following aspects:
    Power management:
    Switching regulator: MOSFET is often used as a key component of switching regulators (such as PWM control), and achieves high-efficiency voltage conversion and current regulation by controlling its switching state. In circuits such as battery management and charging control, MOSFET ensures the safety and service life of the battery.
    LED driver: In the field of LED lighting, MOSFET is used to drive LED lights to achieve energy-saving and efficient lighting control.
    DC-DC converter: In the power conversion system, MOSFET is an important component of the DC-DC converter, which can convert one DC voltage to another DC voltage.
    Motor control:
    Motor drive: MOSFET is used to drive the motor in the motor control system to realize the start and stop and speed regulation of the motor. In the fields of automobiles, industry, household appliances, etc., MOSFET is the core component of motor control.
    Braking system: In the braking system of the car, MOSFET controls the current to achieve precise control of the braking function.
    Communication equipment:
    Power amplifier: In mobile communication base stations, MOSFET is used as a power amplifier to amplify and process signals to improve communication quality.
    RF switch: The fast switching speed and high frequency response capability of MOSFET make it suitable for RF switch to achieve fast switching and routing of signals.
    Modulator, mixer: In wireless communication systems, MOSFET is used in key components such as modulators and mixers to achieve signal modulation and frequency conversion.
    Consumer electronics:
    Digital electronic products: MOSFET is widely used in digital electronic products such as mobile phones, tablets, and laptops for power management, signal processing and other circuits.
    Display equipment: In display devices such as LCD TVs and monitors, MOSFET is used to drive backlights, control display panels, etc.
    Medical equipment:
    Power management: In medical equipment, MOSFET is used for power management to ensure stable operation and efficient energy consumption of equipment.
    Signal amplification: The high input resistance and low noise characteristics of MOSFET make it used in medical monitors and other equipment to amplify physiological signals (such as electrocardiogram, electroencephalogram, etc.)

• Prompt Responsiveness

• Guaranteed Quality

• Global Access

• Competitive Market Price

• One-Stop support services of supply chain

Jinftry, Your most trustworthy component supplier, welcome to send us the inquiry, thank you!

Do you have any questions about ICL7667MTV/883B ?
Feel free to contact us:

+86-755-28503874
+8615019224070, annies65, +8615118125813
568248857, 827259012, 316249462
+8615019224070, +8615118118839, +8615118125813
( Email first will be appreciative )

Customer reviews

Post your comment

Rochester Electronics, LLC
Rochester Electronics, LLC
Rochester Electronics, LLC is an electronic component distribution and manufacturing company.
Rochester Electronics, LLC was founded in Massachusetts, United States in 1981. The company's products include DSP, discrete components, high reliability and military products,...
CA3046
CA3046

CA3046 - GENERAL PURPOSE NPN TRA

BLF242
BLF242

CA3046 - GENERAL PURPOSE NPN TRA

BLF242
BLF242

CA3046 - GENERAL PURPOSE NPN TRA

BLF1046
BLF1046

CA3046 - GENERAL PURPOSE NPN TRA

CLF1G0060S-10
CLF1G0060S-10

CA3046 - GENERAL PURPOSE NPN TRA

CLF1G0060-30
CLF1G0060-30

CA3046 - GENERAL PURPOSE NPN TRA

BLL1214-250
BLL1214-250

CA3046 - GENERAL PURPOSE NPN TRA

BLA1011-300
BLA1011-300

CA3046 - GENERAL PURPOSE NPN TRA

Electronic Parts Index
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
0
1
2
3
4
5
6
7
8
9
Shopping Cart Tel: +86-755-28503874 Email: [email protected] Skype: +8615019224070, annies65, +8615118125813 QQ: 568248857, 827259012, 316249462 Mobile: +8615019224070, +8615118118839, +8615118125813 WeChat: Send Message
TOP