5CEFA2F23C8N vs EP4CE75F29C7

Part Number
5CEFA2F23C8N
EP4CE75F29C7
Category Embedded - FPGAs (Field Programmable Gate Array) Embedded - FPGAs (Field Programmable Gate Array)
Manufacturer Intel Intel
Description IC FPGA 224 I/O 484FBGA IC FPGA 426 I/O 780FBGA
Package 484-BGA 780-BGA
Series Cyclone® V E Cyclone® IV E
Voltage - Supply 1.07 V ~ 1.13 V 1.15 V ~ 1.25 V
Operating Temperature 0°C ~ 85°C (TJ) 0°C ~ 85°C (TJ)
Mounting Type Surface Mount Surface Mount
Package / Case 484-BGA 780-BGA
Supplier Device Package 484-FBGA (23x23) 780-FBGA (29x29)
Number of I/O 224 426
Number of LABs/CLBs 9434 4713
Number of Logic Elements/Cells 25000 75408
Total RAM Bits 2002944 2810880
  • 1. What is FPGA Field Programmable Gate Array?

    FPGA (Field Programmable Gate Array) is a semiconductor device that allows users to change and configure the internal connection structure and logic units of the device through software means after manufacturing to complete the digital integrated circuit of the established design function. ‌ FPGA consists of programmable logic resources, programmable interconnection resources and programmable input and output resources, and is mainly used to implement sequential logic circuits with state machines as the main feature.
    FPGA is a product further developed on the basis of programmable devices such as [PAL (Programmable Array Logic) and GAL (General Array Logic). As a semi-custom circuit in the field of application-specific integrated circuits (ASIC), it not only solves the shortcomings of customized circuits, but also overcomes the shortcomings of the limited number of gate circuits of the original programmable devices. FPGA realizes a unique method of digital circuits by providing programmable hardware blocks and interconnections that can be configured to perform various tasks, making hardware development more flexible.

  • 2. Can FPGAs replace microcontrollers?

    FPGAs cannot completely replace microcontrollers (MCUs). Although FPGAs and MCUs have their own characteristics and advantages in functions and applications, FPGAs cannot completely replace MCUs. There are significant differences between FPGAs and MCUs in terms of programmability, processing power, flexibility, development cycle, and cost.
    The main differences between FPGAs and MCUs include:
    Programmability: FPGAs are programmable and can be reprogrammed to achieve new functions, while MCUs are fixed and cannot be changed.
    Processing power: FPGAs are usually used in high-performance computing, digital signal processing, image processing, and other fields, while MCUs are usually used for simple tasks such as controlling and monitoring equipment and sensors.
    Flexibility: FPGA is more flexible than MCU and can be programmed and reprogrammed according to different applications, while MCU can usually only run predefined programs in its internal memory.
    Development cycle: FPGA has a longer development cycle than MCU because FPGA needs to be designed, verified and debugged, while MCU usually only needs to write and debug programs.
    Cost: FPGA costs more than MCU because FPGA needs to be manufactured and tested, and a lot of design and verification work is required, while MCU has a relatively low cost.
    In specific application scenarios, FPGA and MCU each have their own advantages:
    Advantages of FPGA: high programmability, parallel processing capability, high performance, suitable for applications that require rapid prototyping and system upgrades, suitable for scenarios with high real-time requirements.
    Advantages of MCU: high integration, low cost, low power consumption, suitable for scenarios with strict power consumption requirements.
    In summary, although FPGA performs well in some high-performance and flexible application scenarios, MCU still has irreplaceable advantages in simple control and monitoring tasks.

  • 3. Is FPGA faster than CPU?

    FPGAs are faster than CPUs in some cases. FPGAs are programmable hardware devices whose internal architecture can be configured by users as needed, which enables them to process multiple computing tasks in parallel, resulting in higher computing performance in some scenarios.
    FPGAs and CPUs have different architectures and design goals. CPUs are general-purpose processors that can perform a variety of tasks, but may require multiple clock cycles to process specific operations. FPGAs, on the other hand, achieve specific computing structures by reorganizing circuits, and have higher parallelism and efficiency. For example, when processing specific tasks such as signals and images, FPGAs can complete them faster than CPUs.
    The main advantage of FPGAs is their programmability and flexibility. FPGAs can be reprogrammed and reconfigured as needed, which enables designers to quickly test new and updated algorithms without developing and releasing new hardware, thereby speeding up time to market and saving costs. In addition, FPGAs offer the advantages of superior performance and reduced latency, and are suitable for real-time applications that require low latency and deterministic latency.

  • 4. Why use FPGA as a digital controller?

    The main reason for using FPGA as a digital controller is its flexibility and programmability. FPGA (Field Programmable Gate Array) is a chip whose internal structure can be changed through programming. It has high flexibility and programmability, which makes FPGA widely used in the field of digital controllers.
    The flexibility of FPGA is reflected in the fact that its logic units can be configured to implement different logic functions. Users can use hardware description languages ​​(such as VHDL or Verilog) to write programs to map logic functions to lookup tables (LUTs) and logic units inside FPGA. This flexibility allows FPGAs to adapt to different application requirements and can be reprogrammed as needed to adapt to new application scenarios.
    In addition, FPGAs also have high-performance parallel computing capabilities and high-speed data processing capabilities, which makes it play an important role in digital signal processing, image processing, network communication and other fields. The parallel processing capabilities of FPGAs enable it to handle multiple tasks at the same time, improving overall processing efficiency.

Shopping Cart Tel: +86-755-28503874 Email: [email protected] Skype: +8615019224070, annies65, +8615118125813 QQ: 568248857, 827259012, 316249462 Mobile: +8615019224070, +8615118118839, +8615118125813 WeChat: Send Message
TOP