5SEE9H40I4G vs 5SGSED8K3F40I4G

Part Number
5SEE9H40I4G
5SGSED8K3F40I4G
Category Embedded - FPGAs (Field Programmable Gate Array) Embedded - FPGAs (Field Programmable Gate Array)
Manufacturer Altera Altera
Description IC FPGA 696 I/O 1517HBGA IC FPGA 696 I/O 1517FBGA
Package Tray Tray
Series Stratix® V E Stratix® V GS
Voltage - Supply 0.82V ~ 0.88V 0.82V ~ 0.88V
Operating Temperature -40°C ~ 100°C (TJ) -40°C ~ 100°C (TJ)
Mounting Type Surface Mount Surface Mount
Package / Case 1517-BBGA, FCBGA 1517-BBGA, FCBGA
Supplier Device Package 1517-HBGA (45x45) 1517-FBGA (40x40)
Number of I/O 696 696
Number of Gates - -
Number of LABs/CLBs 317000 262400
Number of Logic Elements/Cells 840000 695000
Total RAM Bits 53248000 51200000
  • 1. What is FPGA Field Programmable Gate Array?

    FPGA (Field Programmable Gate Array) is a semiconductor device that allows users to change and configure the internal connection structure and logic units of the device through software means after manufacturing to complete the digital integrated circuit of the established design function. ‌ FPGA consists of programmable logic resources, programmable interconnection resources and programmable input and output resources, and is mainly used to implement sequential logic circuits with state machines as the main feature.
    FPGA is a product further developed on the basis of programmable devices such as [PAL (Programmable Array Logic) and GAL (General Array Logic). As a semi-custom circuit in the field of application-specific integrated circuits (ASIC), it not only solves the shortcomings of customized circuits, but also overcomes the shortcomings of the limited number of gate circuits of the original programmable devices. FPGA realizes a unique method of digital circuits by providing programmable hardware blocks and interconnections that can be configured to perform various tasks, making hardware development more flexible.

  • 2. Is FPGA a microcontroller?

    FPGA is not a microcontroller. There are significant differences between FPGA and microcontroller in terms of function and use.
    FPGA is a programmable integrated circuit, which is programmed through hardware description language and can customize the circuit according to needs. It is very suitable for application scenarios that require flexible configuration and high performance. In contrast, microcontrollers (MCUs) are integrated circuits with preset functions, usually used for single tasks and requiring efficient execution.
    FPGAs and MCUs also differ in structure and application scenarios. FPGAs offer great flexibility and are suitable for complex applications that require rapid prototyping and reconfigurability. On the other hand, MCUs combine processor cores, memory, and various peripherals in a single chip, designed for specific tasks, and provide cost-effective solutions.

  • 3. Is FPGA analog or digital?

    FPGAs are digital. FPGAs (field programmable gate arrays) are integrated chips that are mainly digital circuits, not analog. FPGAs are a type of programmable logic device that processes digital signals instead of analog signals.
    FPGAs are a type of programmable logic device, a type of programmable logic device (PLD). It solves the shortcomings of traditional custom circuits, while also overcoming the shortcomings of the limited number of gate circuits in the original programmable devices. FPGA is a product that is further developed on the basis of traditional logic circuits and gate arrays such as PAL (Programmable Logic Array), GAL (General Array Logic), and CPLD (Complex Programmable Logic Device).
    The design process of FPGA includes the use of computer-aided design, by drawing schematic diagrams that implement user requirements, editing Boolean equations, or using hardware description languages ​​as design inputs. Then after a series of conversion programs, automatic layout and routing, and simulation processes, the FPGA data file is finally generated to initialize the FPGA device.

  • 4. Why use FPGA as a digital controller?

    The main reason for using FPGA as a digital controller is its flexibility and programmability. FPGA (Field Programmable Gate Array) is a chip whose internal structure can be changed through programming. It has high flexibility and programmability, which makes FPGA widely used in the field of digital controllers.
    The flexibility of FPGA is reflected in the fact that its logic units can be configured to implement different logic functions. Users can use hardware description languages ​​(such as VHDL or Verilog) to write programs to map logic functions to lookup tables (LUTs) and logic units inside FPGA. This flexibility allows FPGAs to adapt to different application requirements and can be reprogrammed as needed to adapt to new application scenarios.
    In addition, FPGAs also have high-performance parallel computing capabilities and high-speed data processing capabilities, which makes it play an important role in digital signal processing, image processing, network communication and other fields. The parallel processing capabilities of FPGAs enable it to handle multiple tasks at the same time, improving overall processing efficiency.

Shopping Cart Tel: +86-755-28503874 Email: [email protected] Skype: +8615019224070, annies65, +8615118125813 QQ: 568248857, 827259012, 316249462 Mobile: +8615019224070, +8615118118839, +8615118125813 WeChat: Send Message
TOP