AD7478ARTZ-REEL7 vs AD7091BCPZ-RL7

Part Number
AD7478ARTZ-REEL7
AD7091BCPZ-RL7
Category Data Acquisition - Analog to Digital Converters (ADC) Data Acquisition - Analog to Digital Converters (ADC)
Manufacturer Analog Devices Inc. Analog Devices Inc.
Description IC ADC 8BIT SAR SOT23-6 IC ADC 12BIT SAR 8LFCSP
Package Tape & Reel (TR) Tape & Reel (TR)
Series - -
Features - -
Operating Temperature -40°C ~ 85°C -40°C ~ 125°C
Mounting Type Surface Mount Surface Mount
Package / Case SOT-23-6 8-UFDFN Exposed Pad, CSP
Supplier Device Package SOT-23-6 8-LFCSP-UD (2x2)
Reference Type Supply Supply
Sampling Rate (Per Second) 1M 1M
Data Interface SPI, DSP SPI, DSP
Number of Bits 8 12
Voltage - Supply, Analog 2.7V ~ 5.25V 2.09V ~ 5.25V
Voltage - Supply, Digital 2.7V ~ 5.25V 2.09V ~ 5.25V
Number of Inputs 1 1
Input Type Single Ended Single Ended
Configuration S/H-ADC S/H-ADC
Ratio - S/H:ADC 1:1 1:1
Number of A/D Converters 1 1
Architecture SAR SAR
  • 1. What is ADC for data acquisition?

    A data collector is an electronic device used to convert various data (such as barcodes, RFID tags, etc.) into a storable and editable format and transmit it to a computer or system in real time. Data collectors are usually operated using handheld devices (such as inventory counting machines or PDAs) and have functions such as real-time acquisition, automatic storage, instant display, instant feedback, automatic processing, and automatic transmission. They can be widely used in warehouse management, logistics transportation, retail, medical, military and other fields. The main functions of data collectors include data acquisition, real-time data processing, data storage and transmission.
    ADC, or analog-to-digital converter, is an electronic device that can convert continuously changing analog signals into discrete digital signals. It is mainly used in data acquisition, signal processing, communication and other fields.

  • 2. What is the main purpose of ADC?

    The main purpose of ADC is to convert the input analog signal into a digital signal.
    ADC, or analog-to-digital converter, is mainly used to convert continuously changing analog signals into discrete digital signals. The implementation process of ADC usually includes four steps: sampling, holding, quantization, and encoding.

  • 3. How many types of ADC are there?

    The types of ADC (Analog-to-Digital Converter) mainly include:
    1. Integral ADC: Its working principle is to convert the input voltage into time (pulse width signal) or frequency (pulse frequency), and then obtain the digital value by the timer/counter. The advantage of the integral ADC is that it can obtain high resolution with a simple circuit and has strong anti-interference ability, but the disadvantage is that the conversion rate is extremely low because the conversion accuracy depends on the integration time.
    2. Successive approximation type (SAR ADC): The successive approximation ADC is one of the most common architectures. Its basic principle is to convert by gradually approximating the value of the analog input signal. The advantages of the successive approximation ADC are high speed and low power consumption. It is cheap at low resolution, but expensive at high precision.
    3. Parallel comparison type/serial-parallel comparison type ADC: The parallel comparison type AD uses m

  • 4. What is the principle of analog-to-digital converters?

    The working principle of the analog-to-digital converter (ADC) is to convert analog signals into digital signals through four processes: sampling, holding, quantization, and encoding.
    The main components of the analog-to-digital converter include samplers and quantizers, which work together to convert continuous analog signals into discrete digital signals. This process requires a reference analog quantity as a standard, and the maximum convertible signal size is usually used as the reference standard. The basic principles of the analog-to-digital converter can be summarized as follows:
    Sampling: The analog-to-digital converter first samples the input analog signal through a sampling circuit, that is, discretizes the analog signal on the time axis.
    Holding: The sampled signal is held by the holding circuit for the next quantization and encoding process.
    Quantization: The quantization process is to divide the amplitude of the sampled and held analog signal into a finite number of le

Shopping Cart Tel: +86-755-28503874 Email: [email protected] Skype: +8615019224070, annies65, +8615118125813 QQ: 568248857, 827259012, 316249462 Mobile: +8615019224070, +8615118118839, +8615118125813 WeChat: Send Message
TOP