ADC083000CIYB/NOPB vs ADC12D1000CIUT/NOPB

Part Number
ADC083000CIYB/NOPB
ADC12D1000CIUT/NOPB
Category Data Acquisition - Analog to Digital Converters (ADC) Data Acquisition - Analog to Digital Converters (ADC)
Manufacturer National Semiconductor Texas Instruments
Description IC ADC 8BIT FOLD INTERP 128HLQFP IC ADC 12BIT 292BGA
Package Bulk Tray
Series - -
Features - -
Operating Temperature -40°C ~ 85°C -40°C ~ 85°C
Mounting Type Surface Mount Surface Mount
Package / Case 128-LQFP Exposed Pad 292-BBGA
Supplier Device Package 128-HLQFP (20x20) 292-BGA (27x27)
Reference Type Internal -
Sampling Rate (Per Second) 3G 2G
Data Interface LVDS - Parallel -
Number of Bits 8 12
Voltage - Supply, Analog 1.8V ~ 2V -
Voltage - Supply, Digital 1.8V ~ 2V -
Number of Inputs 1 -
Input Type Differential -
Configuration S/H-ADC -
Ratio - S/H:ADC 1:1 -
Number of A/D Converters 1 2
Architecture Folding Interpolating -
  • 1. How does ADC convert analog to digital?

    The technology that converts analog sound signals into digital signals is called analog-to-digital conversion technology (Analog to Digital Converter, referred to as ADC). The function of ADC is to convert continuously changing analog signals into discrete digital signals. The process of analog-to-digital conversion can be completed by steps such as sampling, holding, quantization, and encoding.

  • 2. How many types of ADC are there?

    The types of ADC (Analog-to-Digital Converter) mainly include:
    1. Integral ADC: Its working principle is to convert the input voltage into time (pulse width signal) or frequency (pulse frequency), and then obtain the digital value by the timer/counter. The advantage of the integral ADC is that it can obtain high resolution with a simple circuit and has strong anti-interference ability, but the disadvantage is that the conversion rate is extremely low because the conversion accuracy depends on the integration time.
    2. Successive approximation type (SAR ADC): The successive approximation ADC is one of the most common architectures. Its basic principle is to convert by gradually approximating the value of the analog input signal. The advantages of the successive approximation ADC are high speed and low power consumption. It is cheap at low resolution, but expensive at high precision.
    3. Parallel comparison type/serial-parallel comparison type ADC: The parallel comparison type AD uses m

  • 3. When is ADC used?

    ADC (Analog-to-Digital Converter) is widely used in a variety of scenarios, including but not limited to:
    Sensor interface: For example, temperature sensors, pressure sensors, and light sensors, ADC converts analog voltages into digital signals for the use of digital thermometers, temperature control systems, barometers, air pressure sensing systems, light intensity detection and control systems.
    Audio signal processing: In microphones, ADC converts analog audio signals into digital signals for digital audio processing, recording, and playback.
    Medical equipment: Such as electrocardiograms (ECGs) and oximeters, ADC converts analog signals of ECG signals and blood oxygen saturation into digital signals for heart health monitoring and diagnosis and blood oxygen level monitoring.
    Data acquisition system: In various applications that need to collect data from analog signals, ADC is used to convert analog signals into digital signals for storage, processing, and analysis.

  • 4. What is the principle of analog-to-digital converters?

    The working principle of the analog-to-digital converter (ADC) is to convert analog signals into digital signals through four processes: sampling, holding, quantization, and encoding.
    The main components of the analog-to-digital converter include samplers and quantizers, which work together to convert continuous analog signals into discrete digital signals. This process requires a reference analog quantity as a standard, and the maximum convertible signal size is usually used as the reference standard. The basic principles of the analog-to-digital converter can be summarized as follows:
    Sampling: The analog-to-digital converter first samples the input analog signal through a sampling circuit, that is, discretizes the analog signal on the time axis.
    Holding: The sampled signal is held by the holding circuit for the next quantization and encoding process.
    Quantization: The quantization process is to divide the amplitude of the sampled and held analog signal into a finite number of le

Shopping Cart Tel: +86-755-28503874 Email: [email protected] Skype: +8615019224070, annies65, +8615118125813 QQ: 568248857, 827259012, 316249462 Mobile: +8615019224070, +8615118118839, +8615118125813 WeChat: Send Message
TOP