BFC233613154 vs MKT1822533015
| Part Number |
|
|
| Category | Film Capacitors | Film Capacitors |
| Manufacturer | Vishay Beyschlag/Draloric/BC Components | Vishay Beyschlag/Draloric/BC Components |
| Description | CAP FILM 0.15UF 20% 630VDC RAD | CAP FILM 3.3UF 10% 100VDC RADIAL |
| Package | Tape & Reel (TR) | Bulk |
| Series | MKP336 1 | MKT1822 |
| Features | - | - |
| Operating Temperature | -55°C ~ 105°C | -55°C ~ 100°C |
| Mounting Type | Through Hole | Through Hole |
| Package / Case | Radial | Radial |
| Applications | EMI, RFI Suppression | General Purpose |
| Tolerance | ±20% | ±10% |
| Size / Dimension | 1.024" L x 0.335" W (26.00mm x 8.50mm) | 1.043" L x 0.413" W (26.50mm x 10.50mm) |
| Termination | PC Pins | PC Pins |
| Voltage Rating - AC | 275V | 63V |
| Voltage Rating - DC | 630V | 100V |
| Lead Spacing | 0.886\" (22.50mm) | 0.886\" (22.50mm) |
| Ratings | X1 | - |
| Height - Seated (Max) | 0.709\" (18.00mm) | 0.728\" (18.50mm) |
| Capacitance | 0.15 µF | 3.3 µF |
| ESR (Equivalent Series Resistance) | - | - |
| Dielectric Material | Polypropylene (PP), Metallized | Polyester, Metallized |

-
1. What is a paper film capacitor?
Paper film capacitors are actually a conceptual error because "paper film capacitors" are not a standard type of capacitor. Based on the information provided, you may want to ask about paper capacitors and film capacitors.
Paper capacitors
Paper capacitors are capacitors that use paper as a dielectric. It consists of thin paper as the dielectric and aluminum foil as the electrode, which is wound into a cylindrical shape and then impregnated with a shell or epoxy resin. Paper capacitors have the following characteristics:
Low cost: Paper capacitors are usually low-cost and suitable for mass production.
Large loss: Due to its material properties, paper capacitors have large losses.
Application scenarios: Mainly used for bypass, coupling, filtering, etc. in low-frequency circuits. -
2. Are film capacitors better than electrolytic capacitors?
Not necessarily
Film capacitors and electrolytic capacitors each have their own advantages and disadvantages, and the specific choice depends on the application scenario.
Advantages of film capacitors
Non-polarity: Film capacitors are non-polar, and there is no need to distinguish between positive and negative poles, avoiding the risk of capacitor explosion due to reverse connection.
Long life: Film capacitors have significantly longer life and better stability.
Wide temperature range: Film capacitors have a wide operating temperature range, generally -40℃~+105℃/110℃, suitable for various ambient temperatures.
High withstand voltage: Film capacitors can withstand overvoltages higher than 1.5 times the rated voltage in a short period of time, and have strong withstand voltage.
Low loss: Film capacitors have low loss and are suitable for high-frequency circuits, especially for occasions requiring low loss and high-frequency applications.
Advantages of electrolytic capacitors
Large capacity: Electrolytic capacitors usually have large capacitance and are suitable for occasions requiring large amounts of energy storage.
Low cost: The cost of electrolytic capacitors is relatively low, suitable for occasions with strict cost requirements.
High energy density: Electrolytic capacitors are a strong choice when cost-effective, high-capacity energy storage is required, especially when maintaining DC output voltage during power outages.
-
3. How do film capacitors fail?
High working environment temperature, improper selection of working current, exceeding the specified working voltage, harmonic current
The main reasons for film capacitor failure include the following:
High working environment temperature: Film capacitors can work normally in a temperature environment of -40℃~+105℃, but exceeding this range will accelerate thermal aging, resulting in a shortened service life, and even bursting in severe cases.
Improper selection of working current: The current value in the circuit should be less than the current value allowed by the film capacitor, otherwise it will cause the capacitor to heat up, and long-term use will shorten the life, and even burst in severe cases.
Exceeding the specified working voltage: Excessive voltage will cause partial discharge, which will then break down the capacitor and cannot be used.
There are harmonic currents: high-order harmonic currents are superimposed on fundamental currents, resulting in an increase in total current, causing capacitor load overload, internal expansion, and explosion.
Buying inferior capacitors: In order to reduce costs, some manufacturers on the market use low-quality materials to produce capacitors, which greatly reduces the actual withstand voltage and life of such capacitors.
The structural characteristics of film capacitors and the impact of the use environment on their performance:
Film capacitors are usually composed of polypropylene film, aluminum foil and plastic shell. Polypropylene film is sensitive to high temperature, which accelerates its aging and shortens the life of the capacitor. In addition, a humid environment will also cause water vapor to enter the capacitor, affecting its performance.
-
4. What is the difference between foil capacitors and film capacitors?
Electrode materials, structure, and application areas
The main difference between foil capacitors and film capacitors lies in electrode materials, structures, and application areas.
Electrode materials and structures
Foil capacitors: Foil capacitors usually use metal foil as electrodes. This electrode is formed on a plastic film by vacuum evaporation, which is called a metallized film. This structure can save the thickness of the electrode foil, thereby reducing the volume of the capacitor and making it more miniaturized.
Film capacitors: Film capacitors use plastic films as dielectrics. Common plastic films include polyethylene, polypropylene, polystyrene or polycarbonate. These films overlap at both ends and are rolled into a cylinder to form a capacitor.

