DP83640TVV/NOPB vs LTC2870CUFD#PBF
| Part Number |
|
|
| Category | Interface - Drivers, Receivers, Transceivers | Interface - Drivers, Receivers, Transceivers |
| Manufacturer | National Semiconductor | Analog Devices Inc. |
| Description | DP83640 IEEE 1588 PRECISION-TIME | IC TRANSCEIVER FULL 2/2 28QFN |
| Package | Bulk | Tube |
| Series | - | - |
| Type | Transceiver | Transceiver |
| Voltage - Supply | 3V ~ 3.6V | 3V ~ 5.5V |
| Operating Temperature | - | 0°C ~ 70°C |
| Mounting Type | Surface Mount | Surface Mount |
| Package / Case | 48-LQFP | 28-WFQFN Exposed Pad |
| Supplier Device Package | 48-LQFP (7x7) | 28-QFN (4x5) |
| Protocol | IEEE 1588 | Multiprotocol |
| Data Rate | - | 20Mbps |
| Number of Drivers/Receivers | - | 2/2 |
| Receiver Hysteresis | - | 130 mV |
| Duplex | - | Full |
-
1. What is an IC driver?
An IC driver is an integrated circuit that is mainly used to control and drive various devices, such as LCDs, motors, etc. It integrates the circuits that drive and control these devices, making the entire circuit design more concise and reducing the risk of overcurrent and overheating.
The role of the IC driver is to convert the signal from the host or controller into the signal required by the peripheral or sensor so that it can work properly. Depending on the function, the driver chip can be divided into many types, such as motor driver IC, LCD driver IC, etc. -
2. What is a transceiver IC?
A transceiver IC is an integrated circuit that is mainly used to realize the sending and receiving functions of signals. It can be used in different communication systems. According to the specific application scenario, the transceiver IC can realize the conversion between electrical signals and optical signals and radio frequency signals.
The specific types of transceiver ICs include optical transceiver chips and radio frequency transceiver chips. Optical transceiver chips are mainly used in optical fiber communication systems to realize the conversion between optical signals and electrical signals. They are the basic chips of the physical layer of optical fiber broadband networks. Radio frequency transceiver chips are used in radio communications. As a "translator" between radio waves and digital signals, they realize the conversion between baseband signals and radio frequency signals. They are widely used in 5G base stations, industrial Internet, Internet of Vehicles and other fields. -
3. What are transceivers used for?
Transceivers are mainly used to convert digital signals into optical signals or electrical signals for data transmission in computer networks. The transceiver consists of two parts: a transmitter and a receiver. The transmitter converts the digital signal into an optical signal or an electrical signal and sends it to the network, while the receiver converts the received optical signal or electrical signal back into a digital signal for computer processing.
The working principle of the transceiver is based on photoelectric conversion and electro-optical conversion technology. At the transmitting end, the transceiver converts the digital signal into an optical signal or an electrical signal and transmits it to the remote device through modulation technology; at the receiving end, the transceiver converts the received optical signal or electrical signal back into a digital signal through demodulation technology for local device processing.
The application scenarios of transceivers are very wide, including local area networks, wide area networks, wireless networks, satellite communications, optical fiber communications, robots and IoT devices. They are widely used in computer networks, communication equipment, industrial automation and other fields to realize data transmission and communication between different devices. -
4. What are SFP transceivers used for?
SFP transceivers are mainly used for optical communication applications in telecommunications and data communications, especially for connecting motherboards and optical fibers or UTP cables for network devices such as switches and routers. SFP transceivers achieve high-speed data transmission by converting gigabit electrical signals into optical signals. Their maximum data transmission rate can reach 4.25 Gbps. They are mainly used in communication fields such as Gigabit Ethernet, Gigabit Optical Channel, switch interface, switching backplane, etc.
SFP transceivers have many types, which can be divided into the following categories according to the cable type, transmission range, transmission rate and application scenario:
Cable type: SFP modules can work on optical fiber and copper wire, and are divided into single-mode SFP used with single-mode optical fiber and multi-mode SFP used with multi-mode optical fiber.
Transmission range: Multi-mode SFP is suitable for shorter distance transmission, up to 550 meters, while single-mode SFP is suitable for long-distance transmission, up to 200 kilometers.
Transmission rate: From Fast Ethernet to Gigabit Ethernet, to 10Gb, 25Gb and 100Gb Ethernet, SFP modules are constantly upgraded to meet higher bandwidth requirements.
Application: SFP modules are widely used in scenarios such as high-definition audio/video transmission, passive optical network (PON), multiplexing and simplex networks.

