EP3C10F256I7N vs EP4CGX75DF27I7N

Part Number
EP3C10F256I7N
EP4CGX75DF27I7N
Category Embedded - FPGAs (Field Programmable Gate Array) Embedded - FPGAs (Field Programmable Gate Array)
Manufacturer Intel Intel
Description IC FPGA 182 I/O 256FBGA IC FPGA 310 I/O 672FBGA
Package 256-LBGA 672-BGA
Series Cyclone® III Cyclone® IV GX
Voltage - Supply 1.15 V ~ 1.25 V 1.16 V ~ 1.24 V
Operating Temperature -40°C ~ 100°C (TJ) -40°C ~ 100°C (TJ)
Mounting Type Surface Mount Surface Mount
Package / Case 256-LBGA 672-BGA
Supplier Device Package 256-FBGA (17x17) 672-FBGA (27x27)
Number of I/O 182 310
Number of LABs/CLBs 645 4620
Number of Logic Elements/Cells 10320 73920
Total RAM Bits 423936 4257792
  • 1. What is the hardware of FPGA?

    FPGA (Field-Programmable Gate Array) is a hardware device, not software. FPGA is a programmable hardware device consisting of a large number of logic units, storage units and interconnection resources, which can realize complex digital circuits and system designs.
    The hardware structure of FPGA mainly includes the following parts:
    Logic unit: FPGA contains programmable logic blocks that can perform logical and arithmetic operations.
    Interconnection resources: These resources act as connections between logic blocks, allowing data to be transferred between different logic blocks.
    Memory unit: Used to store configuration information and temporary data, supporting FPGA operations and logic processing.
    The characteristics and application scenarios of FPGA include:
    Programmability: FPGA can change the structure of its internal circuits by loading configuration information to achieve different functions.
    High-speed execution: FPGA performs logic operations at the hardware level, which is usually several orders of magnitude faster than software execution.
    Wide application: FPGA is widely used in many fields such as communications, medical, automotive, aerospace, industrial automation, etc. to implement complex digital circuits and algorithms, improve equipment performance, reduce power consumption or achieve specific functional requirements.

  • 2. Is FPGA a microcontroller?

    FPGA is not a microcontroller. There are significant differences between FPGA and microcontroller in terms of function and use.
    FPGA is a programmable integrated circuit, which is programmed through hardware description language and can customize the circuit according to needs. It is very suitable for application scenarios that require flexible configuration and high performance. In contrast, microcontrollers (MCUs) are integrated circuits with preset functions, usually used for single tasks and requiring efficient execution.
    FPGAs and MCUs also differ in structure and application scenarios. FPGAs offer great flexibility and are suitable for complex applications that require rapid prototyping and reconfigurability. On the other hand, MCUs combine processor cores, memory, and various peripherals in a single chip, designed for specific tasks, and provide cost-effective solutions.

  • 3. Is FPGA faster than CPU?

    FPGAs are faster than CPUs in some cases. FPGAs are programmable hardware devices whose internal architecture can be configured by users as needed, which enables them to process multiple computing tasks in parallel, resulting in higher computing performance in some scenarios.
    FPGAs and CPUs have different architectures and design goals. CPUs are general-purpose processors that can perform a variety of tasks, but may require multiple clock cycles to process specific operations. FPGAs, on the other hand, achieve specific computing structures by reorganizing circuits, and have higher parallelism and efficiency. For example, when processing specific tasks such as signals and images, FPGAs can complete them faster than CPUs.
    The main advantage of FPGAs is their programmability and flexibility. FPGAs can be reprogrammed and reconfigured as needed, which enables designers to quickly test new and updated algorithms without developing and releasing new hardware, thereby speeding up time to market and saving costs. In addition, FPGAs offer the advantages of superior performance and reduced latency, and are suitable for real-time applications that require low latency and deterministic latency.

  • 4. Why use FPGA as a digital controller?

    The main reason for using FPGA as a digital controller is its flexibility and programmability. FPGA (Field Programmable Gate Array) is a chip whose internal structure can be changed through programming. It has high flexibility and programmability, which makes FPGA widely used in the field of digital controllers.
    The flexibility of FPGA is reflected in the fact that its logic units can be configured to implement different logic functions. Users can use hardware description languages ​​(such as VHDL or Verilog) to write programs to map logic functions to lookup tables (LUTs) and logic units inside FPGA. This flexibility allows FPGAs to adapt to different application requirements and can be reprogrammed as needed to adapt to new application scenarios.
    In addition, FPGAs also have high-performance parallel computing capabilities and high-speed data processing capabilities, which makes it play an important role in digital signal processing, image processing, network communication and other fields. The parallel processing capabilities of FPGAs enable it to handle multiple tasks at the same time, improving overall processing efficiency.

Shopping Cart Tel: +86-755-28503874 Email: [email protected] Skype: +8615019224070, annies65, +8615118125813 QQ: 568248857, 827259012, 316249462 Mobile: +8615019224070, +8615118118839, +8615118125813 WeChat: Send Message
TOP