EP4CGX75CF23C6 vs 5AGXBA1D4F31C5N

Part Number
EP4CGX75CF23C6
5AGXBA1D4F31C5N
Category Embedded - FPGAs (Field Programmable Gate Array) Embedded - FPGAs (Field Programmable Gate Array)
Manufacturer Intel Intel
Description IC FPGA 290 I/O 484FBGA IC FPGA 416 I/O 896FBGA
Package 484-BGA 896-BBGA, FCBGA
Series Cyclone® IV GX Arria V GX
Voltage - Supply 1.16 V ~ 1.24 V 1.07 V ~ 1.13 V
Operating Temperature 0°C ~ 85°C (TJ) 0°C ~ 85°C (TJ)
Mounting Type Surface Mount Surface Mount
Package / Case 484-BGA 896-BBGA, FCBGA
Supplier Device Package 484-FBGA (23x23) 896-FBGA (31x31)
Number of I/O 290 416
Number of LABs/CLBs 4620 3537
Number of Logic Elements/Cells 73920 75000
Total RAM Bits 4257792 8666112
  • 1. What is the hardware of FPGA?

    FPGA (Field Programmable Gate Array) is a highly flexible programmable logic chip that users can program to achieve specific logic functions according to their needs. The main uses of FPGA include communications and networks, digital signal processing, automotive and aerospace, industrial automation, high-performance computing, smart Internet of Things and many other aspects.

  • 2. What is FPGA in embedded systems?

    FPGA in embedded system is a solution that integrates FPGA technology into embedded system. An embedded system is a computer system designed for a specific application, which usually includes components such as processor, memory, peripheral interface, etc., which are used to control, monitor or perform specific tasks. Combining FPGA with embedded system can bring a series of significant advantages.
    FPGA (Field Programmable Gate Array) is a programmable logic device, which consists of a large number of programmable logic units and programmable interconnection resources. It has the characteristics of flexibility and reconfigurability, and is widely used in communication, digital signal processing, embedded systems and other fields. The basic structure of FPGA includes programmable input and output units, configurable logic blocks, digital clock management modules, embedded block RAM, wiring resources, embedded dedicated hard cores and bottom embedded functional units. The design of FPGA can be implemented through hardware description language, which has high flexibility.

  • 3. Is FPGA a microcontroller?

    FPGA is not a microcontroller. There are significant differences between FPGA and microcontroller in terms of function and use.
    FPGA is a programmable integrated circuit, which is programmed through hardware description language and can customize the circuit according to needs. It is very suitable for application scenarios that require flexible configuration and high performance. In contrast, microcontrollers (MCUs) are integrated circuits with preset functions, usually used for single tasks and requiring efficient execution.
    FPGAs and MCUs also differ in structure and application scenarios. FPGAs offer great flexibility and are suitable for complex applications that require rapid prototyping and reconfigurability. On the other hand, MCUs combine processor cores, memory, and various peripherals in a single chip, designed for specific tasks, and provide cost-effective solutions.

  • 4. Can FPGAs replace microcontrollers?

    FPGAs cannot completely replace microcontrollers (MCUs). Although FPGAs and MCUs have their own characteristics and advantages in functions and applications, FPGAs cannot completely replace MCUs. There are significant differences between FPGAs and MCUs in terms of programmability, processing power, flexibility, development cycle, and cost.
    The main differences between FPGAs and MCUs include:
    Programmability: FPGAs are programmable and can be reprogrammed to achieve new functions, while MCUs are fixed and cannot be changed.
    Processing power: FPGAs are usually used in high-performance computing, digital signal processing, image processing, and other fields, while MCUs are usually used for simple tasks such as controlling and monitoring equipment and sensors.
    Flexibility: FPGA is more flexible than MCU and can be programmed and reprogrammed according to different applications, while MCU can usually only run predefined programs in its internal memory.
    Development cycle: FPGA has a longer development cycle than MCU because FPGA needs to be designed, verified and debugged, while MCU usually only needs to write and debug programs.
    Cost: FPGA costs more than MCU because FPGA needs to be manufactured and tested, and a lot of design and verification work is required, while MCU has a relatively low cost.
    In specific application scenarios, FPGA and MCU each have their own advantages:
    Advantages of FPGA: high programmability, parallel processing capability, high performance, suitable for applications that require rapid prototyping and system upgrades, suitable for scenarios with high real-time requirements.
    Advantages of MCU: high integration, low cost, low power consumption, suitable for scenarios with strict power consumption requirements.
    In summary, although FPGA performs well in some high-performance and flexible application scenarios, MCU still has irreplaceable advantages in simple control and monitoring tasks.

Shopping Cart Tel: +86-755-28503874 Email: [email protected] Skype: +8615019224070, annies65, +8615118125813 QQ: 568248857, 827259012, 316249462 Mobile: +8615019224070, +8615118118839, +8615118125813 WeChat: Send Message
TOP