EP4SGX530KH40C4G vs 5SGXEB5R3F43C2LG

Part Number
EP4SGX530KH40C4G
5SGXEB5R3F43C2LG
Category Embedded - FPGAs (Field Programmable Gate Array) Embedded - FPGAs (Field Programmable Gate Array)
Manufacturer Altera Altera
Description IC FPGA 744 I/O 1517HBGA IC FPGA 600 I/O 1760FBGA
Package Tray Tray
Series - Stratix® V GX
Voltage - Supply - 0.82V ~ 0.88V
Operating Temperature - 0°C ~ 85°C (TJ)
Mounting Type - Surface Mount
Package / Case - 1760-BBGA, FCBGA
Supplier Device Package - 1760-FCBGA (42.5x42.5)
Number of I/O - 600
Number of Gates - -
Number of LABs/CLBs - 185000
Number of Logic Elements/Cells - 490000
Total RAM Bits - 41984000
  • 1. What is the hardware of FPGA?

    FPGA (Field-Programmable Gate Array) is a hardware device, not software. FPGA is a programmable hardware device consisting of a large number of logic units, storage units and interconnection resources, which can realize complex digital circuits and system designs.
    The hardware structure of FPGA mainly includes the following parts:
    Logic unit: FPGA contains programmable logic blocks that can perform logical and arithmetic operations.
    Interconnection resources: These resources act as connections between logic blocks, allowing data to be transferred between different logic blocks.
    Memory unit: Used to store configuration information and temporary data, supporting FPGA operations and logic processing.
    The characteristics and application scenarios of FPGA include:
    Programmability: FPGA can change the structure of its internal circuits by loading configuration information to achieve different functions.
    High-speed execution: FPGA performs logic operations at the hardware level, which is usually several orders of magnitude faster than software execution.
    Wide application: FPGA is widely used in many fields such as communications, medical, automotive, aerospace, industrial automation, etc. to implement complex digital circuits and algorithms, improve equipment performance, reduce power consumption or achieve specific functional requirements.

  • 2. What is the hardware of FPGA?

    FPGA (Field Programmable Gate Array) is a highly flexible programmable logic chip that users can program to achieve specific logic functions according to their needs. The main uses of FPGA include communications and networks, digital signal processing, automotive and aerospace, industrial automation, high-performance computing, smart Internet of Things and many other aspects.

  • 3. What is FPGA in embedded systems?

    FPGA in embedded system is a solution that integrates FPGA technology into embedded system. An embedded system is a computer system designed for a specific application, which usually includes components such as processor, memory, peripheral interface, etc., which are used to control, monitor or perform specific tasks. Combining FPGA with embedded system can bring a series of significant advantages.
    FPGA (Field Programmable Gate Array) is a programmable logic device, which consists of a large number of programmable logic units and programmable interconnection resources. It has the characteristics of flexibility and reconfigurability, and is widely used in communication, digital signal processing, embedded systems and other fields. The basic structure of FPGA includes programmable input and output units, configurable logic blocks, digital clock management modules, embedded block RAM, wiring resources, embedded dedicated hard cores and bottom embedded functional units. The design of FPGA can be implemented through hardware description language, which has high flexibility.

  • 4. Is FPGA faster than CPU?

    FPGAs are faster than CPUs in some cases. FPGAs are programmable hardware devices whose internal architecture can be configured by users as needed, which enables them to process multiple computing tasks in parallel, resulting in higher computing performance in some scenarios.
    FPGAs and CPUs have different architectures and design goals. CPUs are general-purpose processors that can perform a variety of tasks, but may require multiple clock cycles to process specific operations. FPGAs, on the other hand, achieve specific computing structures by reorganizing circuits, and have higher parallelism and efficiency. For example, when processing specific tasks such as signals and images, FPGAs can complete them faster than CPUs.
    The main advantage of FPGAs is their programmability and flexibility. FPGAs can be reprogrammed and reconfigured as needed, which enables designers to quickly test new and updated algorithms without developing and releasing new hardware, thereby speeding up time to market and saving costs. In addition, FPGAs offer the advantages of superior performance and reduced latency, and are suitable for real-time applications that require low latency and deterministic latency.

Shopping Cart Tel: +86-755-28503874 Email: [email protected] Skype: +8615019224070, annies65, +8615118125813 QQ: 568248857, 827259012, 316249462 Mobile: +8615019224070, +8615118118839, +8615118125813 WeChat: Send Message
TOP