F931C685MAA vs F931A685KAA
| Part Number |
|
|
| Category | Tantalum Capacitors | Tantalum Capacitors |
| Manufacturer | KYOCERA AVX | KYOCERA AVX |
| Description | CAP TANT 6.8UF 20% 16V 1206 | CAP TANT 6.8UF 10% 10V 1206 |
| Package | -Reel® | Tape & Reel (TR) |
| Series | F93 | F93 |
| Type | Molded | Molded |
| Features | General Purpose | General Purpose |
| Operating Temperature | -55°C ~ 125°C | -55°C ~ 125°C |
| Mounting Type | Surface Mount | Surface Mount |
| Package / Case | 1206 (3216 Metric) | 1206 (3216 Metric) |
| Tolerance | ±20% | ±10% |
| Size / Dimension | 0.126" L x 0.063" W (3.20mm x 1.60mm) | 0.126" L x 0.063" W (3.20mm x 1.60mm) |
| Voltage - Rated | 16 V | 10 V |
| Lead Spacing | - | - |
| Ratings | - | - |
| Height - Seated (Max) | 0.071\" (1.80mm) | 0.071\" (1.80mm) |
| Capacitance | 6.8 µF | 6.8 µF |
| ESR (Equivalent Series Resistance) | 3.5Ohm @ 100kHz | 3.5Ohm @ 100kHz |
| Lifetime @ Temp. | 2000 Hrs @ 125°C | 2000 Hrs @ 125°C |
| Failure Rate | - | - |
| Manufacturer Size Code | A | A |

-
1. Disadvantages of tantalum capacitors
The price is relatively high.
If used improperly or the circuit design is defective, it may fail, including explosion.
It is polarity sensitive and can only work in the specified direction.
It may fail easily under certain conditions (such as overvoltage, surge current). -
2. Why do tantalum capacitors explode?
The main reason is that excessive voltage or current shocks cause internal short circuits, which trigger thermal runaway.
Excessive ambient temperature may also exacerbate this situation. -
3. When to use tantalum capacitors?
When miniaturization, low ESR (equivalent series resistance), and stable operation over a wide temperature range are required.
Suitable for audio processing, communication equipment, computer motherboards and other fields. -
4. What special precautions must be taken when installing tantalum capacitors?
Ensure the correct polarity connection.
Be careful not to exceed the rated voltage.
Use appropriate fuses or other protective devices to prevent overcurrent.
Consider heat dissipation design to avoid local overheating.

