MK60DX256VMC10 vs MSP430F438IPN
| Part Number |
|
|
| Category | Embedded - Microcontrollers | Embedded - Microcontrollers |
| Manufacturer | NXP USA Inc. | Texas Instruments |
| Description | IC MCU 32B 256KB FLASH 121MAPBGA | IC MCU 16BIT 48KB FLASH 80LQFP |
| Package | Tape & Reel (TR) | Tape & Reel (TR) |
| Series | Kinetis K60 | MSP430x4xx |
| Operating Temperature | -40°C ~ 105°C (TA) | -40°C ~ 85°C (TA) |
| Mounting Type | Surface Mount | Surface Mount |
| Package / Case | 121-LFBGA | 80-LQFP |
| Supplier Device Package | 121-MAPBGA (8x8) | 80-LQFP (12x12) |
| Voltage - Supply (Vcc/Vdd) | 1.71V ~ 3.6V | 1.8V ~ 3.6V |
| Speed | 100MHz | 8MHz |
| Number of I/O | 86 | 48 |
| EEPROM Size | 4K x 8 | - |
| Core Processor | ARM® Cortex®-M4 | MSP430 |
| RAM Size | 64K x 8 | 2K x 8 |
| Core Size | 32-Bit | 16-Bit |
| Connectivity | CANbus, EBI/EMI, Ethernet, I²C, IrDA, SD, SPI, UART/USART, USB, USB OTG | SPI, UART/USART |
| Peripherals | DMA, I²S, LVD, POR, PWM, WDT | Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT |
| Program Memory Size | 256KB (256K x 8) | 48KB (48K x 8 + 256B) |
| Program Memory Type | FLASH | FLASH |
| Data Converters | A/D 38x16b; D/A 2x12b | A/D 12x12b |
| Oscillator Type | Internal | Internal |
-
1. What is an embedded microcontroller?
An embedded microcontroller is a device that integrates an entire computer system into a single chip. It usually includes functional modules such as a central processing unit, memory, input and output ports, and timers, all of which are integrated on a single chip. This design enables embedded microcontrollers to perform specific tasks with high flexibility and efficiency.
The main features of embedded microcontrollers include:
Highly integrated: multiple functions such as CPU, memory, and I/O interface are integrated on a single chip, reducing the number of components and system volume.
Strong specialization: Optimized for specific application scenarios, providing a specific combination of processing power, memory, and input and output interfaces.
Efficient and reliable: The integrated design makes the system more stable and reliable, reducing the connection of external components and signal interference.
High flexibility: According to different application requirements, embedded microcontrollers can have multiple derivative products, each with the same processor core, but different memory and peripheral configurations to adapt to different application scenarios. -
2. Is Raspberry Pi an embedded system?
Raspberry Pi is an embedded system. Raspberry Pi is a single-board computer based on ARM architecture with rich input and output interfaces and powerful computing power. It can run the Linux operating system and support multiple programming languages such as Python and C++. Due to its compact size and powerful functions, Raspberry Pi is widely used in various embedded systems and robotics projects.
Features of Raspberry Pi include:
Based on ARM architecture: Raspberry Pi adopts ARM architecture, which is an architecture widely used in embedded systems with low power consumption and high efficiency.
Rich interfaces: It has USB interface, Fast Ethernet interface, SD slot, HDMI output interface, etc., and can connect a variety of peripherals.
Open source software support: It supports multiple programming languages and a large number of open source software libraries, which is convenient for development and expansion.
Wide application: It is often used to build routers, smart cars, smart homes, servers and other applications.
Disadvantages of Raspberry Pi include:
Single 5V power supply: The power supply design is simple, which may cause unstable operation of peripherals.
Bandwidth limitation: The USB interface has limited bandwidth and may encounter performance bottlenecks when transmitting large amounts of data. -
3. What is the difference between an embedded MCU and a PLC MCU?
The main difference between an embedded MCU and a PLC MCU is that their application fields, system architectures, and programming methods are different.
Although both embedded MCUs and PLC MCUs involve MCU technology, their application fields are significantly different. Embedded MCUs are mainly used in non-industrial fields such as consumer electronics, automobiles, aerospace, etc. They emphasize high specificity and flexibility and can be customized according to specific needs. PLC MCUs are mainly used in industrial automation control fields, such as electricity, petroleum, chemical industry, machinery manufacturing, etc. The original design intention is to adapt to complex industrial environments and have strong stability and reliability.
In terms of system architecture, embedded MCUs usually have fixed hardware and software configurations, are designed and developed for specific applications, and hardware and software are tightly integrated to form a complete system. PLC MCUs are based on a modular architecture, and different modules can be added to achieve different functions. Both hardware and software are standardized, which is convenient for users to select and configure.
In terms of programming language, embedded MCUs are usually programmed in high-level programming languages such as C and C++. These programming languages have powerful functions and flexibility and can meet complex programming needs. PLC MCUs are mainly programmed in ladder diagram language. This graphical programming method is simple and easy to understand, which is convenient for users to get started quickly. In addition, it also supports some text programming languages, such as instruction lists and structured text. -
4. What language is used for embedded microcontroller programming?
The main languages used for embedded microcontroller programming include C, C++, assembly language, Python and Rust. These languages have their own characteristics and are suitable for different development needs and scenarios.
C is one of the most commonly used languages in embedded development. It has the advantages of high efficiency, flexibility, and strong portability. It can directly operate hardware and is suitable for low-level driver development, kernel programming, etc. C++ is used in complex embedded systems and adds object-oriented features, which is suitable for the development of large applications. Although assembly language is difficult to learn and write, it is indispensable in scenarios that require high optimization and direct control of hardware. Python is easy to learn and use, and is often used in data processing, prototype development, and rapid testing. Rust is gradually gaining attention in the embedded field due to its memory safety and high performance, especially in applications with high security requirements.

