LM4050BIX3-2.5 Product Introduction:
Maxim Integrated Part Number LM4050BIX3-2.5(PMIC - Voltage Reference), developed and manufactured by Maxim Integrated, distributed globally by Jinftry. We distribute various electronic components from world-renowned brands and provide one-stop services, making us a trusted global electronic component distributor.
LM4050BIX3-2.5 is one of the part numbers distributed by Jinftry, and you can learn about its specifications/configurations, package/case, Datasheet, and other information here. Electronic components are affected by supply and demand, and prices fluctuate frequently. If you have a demand, please do not hesitate to send us an RFQ or email us immediately sales@jinftry.com Please inquire about the real-time unit price, Data Code, Lead time, payment terms, and any other information you would like to know. We will do our best to provide you with a quotation and reply as soon as possible.
Introducing the Maxim Integrated LM4050BIX3-2.5, a high-precision voltage reference that is designed to meet the demanding requirements of various applications. This voltage reference offers exceptional accuracy and stability, making it an ideal choice for precision measurement and control systems.
One of the key features of the LM4050BIX3-2.5 is its low voltage drift, which ensures consistent performance over a wide temperature range. With a maximum temperature coefficient of only 20ppm/°C, this voltage reference provides reliable and accurate voltage references even in harsh operating conditions.
Another notable feature of the LM4050BIX3-2.5 is its low power consumption. With a typical supply current of only 60µA, this voltage reference is highly efficient and helps to extend the battery life in portable devices.
The LM4050BIX3-2.5 is available in a small SOT-23 package, making it suitable for space-constrained applications. Its compact size and low power consumption make it an excellent choice for battery-powered devices, such as handheld meters, portable medical devices, and industrial sensors.
In summary, the Maxim Integrated LM4050BIX3-2.5 is a high-precision voltage reference that offers exceptional accuracy, stability, and low power consumption. With its wide temperature range and compact size, it is well-suited for a variety of applications in the precision measurement and control systems.
Voltage Reference is an electronic component or circuit that provides accurate and stable voltage output. It is the standard used to establish the reference voltage in many electronic systems. The voltage reference can be a standalone integrated circuit (IC) or it can be a component included in a larger system. The output voltage of the voltage reference is usually very stable and is not affected by factors such as temperature changes, power supply voltage fluctuations, etc., which makes it an indispensable component in electronic design.
Application
Voltage Reference has a wide range of applications, covering almost all electronic devices and systems that require high-precision voltage reference. In the field of industrial automation, voltage reference is used in precision measuring instruments and sensor signal processing in process control systems to ensure the accuracy of measurement data and the stability of control processes. In the field of communication, as a reference voltage source for key components such as clock generator and signal modulator, it is very important to ensure the quality of communication. In the field of consumer electronics, with the popularity of smart devices, the demand for power management is increasing, and voltage reference plays an important role in battery management systems and charge control. In addition, in the field of medical electronics, aerospace, scientific research and other high-precision requirements.
FAQ about PMIC - Voltage Reference
-
1. When to use voltage reference?
The voltage reference is used in the following situations:
As a basis for measurement: When measuring voltage, the voltage reference provides a stable reference point, making the measurement result more accurate and reliable. When measuring, the negative end of the voltmeter is grounded and the positive end is connected to the measured point, so that the measured value is the voltage value of the measured point.
Adjust and calibrate other circuit elements: The reference voltage can be used to adjust and calibrate other circuit elements to improve the performance of the entire system. By comparing with the reference voltage, various parameters in the circuit can be accurately adjusted to ensure the stability and accuracy of the system.
Setting thresholds and judgments: In comparison circuits, reference voltages are used to set thresholds and make judgments. By comparing with the reference voltage, the rationality of various states and signals in the circuit can be determined.
Definition and function of voltage reference:
Voltage reference refers to the voltage value used as a reference in an electronic circuit. It can be constant or variable, but usually requires high precision, low noise and stability. The reference voltage is implemented through specialized integrated circuits, resistor networks, voltage regulators, and temperature compensation circuits to ensure that the voltage value in the circuit always remains within the set range, thereby ensuring the stability and accuracy of the system.
-
2. How to choose a voltage reference?
Voltage references are used in the following situations:
As a reference for measurement: When measuring voltage, the voltage reference provides a stable reference point, making the measurement result more accurate and reliable. When measuring, the negative end of the voltmeter is grounded and the positive end is connected to the measured point, so that the measured value is the voltage value of the measured point.
Adjust and calibrate other circuit elements: The reference voltage can be used to adjust and calibrate other circuit elements to improve the performance of the entire system. By comparing with the reference voltage, various parameters in the circuit can be accurately adjusted to ensure the stability and accuracy of the system.
Setting thresholds and judgments: In comparison circuits, reference voltages are used to set thresholds and make judgments. By comparing with the reference voltage, the rationality of various states and signals in the circuit can be determined.
-
3. What is a reference voltage IC?
A reference voltage IC is a voltage reference IC. A voltage reference IC is a precise, temperature-compensated voltage source that can provide a specific output voltage value, such as 1.225V, 4.096V or 10.000V. They are mainly used to provide a stable and precise voltage reference in various electronic systems to ensure the stability and reliability of the system.
There are two main types of voltage reference ICs: shunt voltage reference ICs and series voltage reference ICs. The shunt voltage reference IC uses an external series resistor to set the maximum current supplied to the load. It is suitable for situations where the load is almost constant and the power supply changes very little. The series voltage reference IC contains a voltage reference and an amplifier that controls the output voltage. It is suitable for situations where the load current is variable and the output voltage changes strictly when the temperature changes.